
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 1

Least-Privilege Calls to Amazon Web Services

Puneet Gill, Werner Dietl and Mahesh Tripunitara

Abstract—We address least-privilege in a particular context of public cloud computing: calls to Amazon Web Services (AWS)

Application Programming Interfaces (APIs). AWS is, by far, the largest cloud provider, and therefore an important context in which to

consider the fundamental security design principle of least-privilege, which states that a thread of execution should possess only those

privileges it needs. There have been reports of over-privilege being a root cause of attacks against AWS cloud applications, and a

least-privilege set for an API call is a necessary building-block in devising a least-privilege policy for a cloud application. We observe

that accurate information on a least-privilege set for an invoker of a method to possess is simply not available for most such methods in

AWS. We provide a meaningful characterization of least-privilege in this context. We then propose techniques to determine such sets,

and discuss a black-box process we have devised and carried out to identify such sets for all 707 API methods we are able to invoke

across five AWS services. We discuss a number of interesting discoveries we have made, some of which are surprising and some

alarming, that we have reported to AWS. Our work has resulted in a database of least-privilege sets for API calls to AWS, which we

make available publicly. Developers can consult our database when configuring security policies for their cloud applications, and we

welcome contributors that augment our database. Also, we discuss example uses of our database via an assessment of two

repositories and two full-fledged serverless applications that are available publicly and have policies published alongside. We observe

that the vast majority of policies are over-privileged. Our work contributes constructively to securing cloud applications in the largest

cloud provider.

Index Terms—Computer Security, Amazon Web Services, Least-Privilege.

F

1 INTRODUCTION

Infrastructure- and Platform-as-a-Service public cloud com-
puting, with which a developer, who is a customer of the
cloud provider, is able to deploy and run applications on the
hardware and software computing resources of the cloud
provider, has become a dominant paradigm over the past
decade [1]. Amazon Web Services (AWS) [2] has been, by
far, the largest provider of such services over the past
few years [3]. AWS packages its offerings as services such
as the EC2 compute service and the S3 storage service.
Each of these services exposes an Application Programming
Interface (API) that comprises a number of methods. Such a
method can be called or invoked.

Security, and in particular, the protection of resources
from unauthorized principals, is an essential requirement in
any system in which such resources are stored and manipu-
lated. AWS is no exception. AWS perceives the security of a
cloud application as a shared responsibility: “. . . AWS man-
ages the underlying infrastructure and foundation services,
the operating system, and the application platform. [The
customer is] responsible for the security of [the customer’s]
code, the storage and accessibility of sensitive data, and
identity and access management. . . ” [4].

As part of its responsibility for security, AWS provides
constructs that the developer can use to specify their in-
tended security policy. An example of such a construct is an
identity-based policy [5]. An identity-based policy is attached
to a user, role or group, and “controls what actions the
identity can perform, on which resources, and under what

The authors are with the Department of Electrical and Computer Engineering,

University of Waterloo, Canada.

E-mails: {p24gill,wdietl,tripunit}@uwaterloo.ca

Manuscript received April 19, 2005; revised August 26, 2015.

{ "Statement": [{

"Effect": "Allow",

"Action": ["dynamodb:DeleteItem",

"dynamodb:DeleteTable"],

"Resource": "arn:aws:dynamodb:region:accountId:

table/myTable" },

{ "Effect": "Allow",

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:::myBucket/*" }] }

Fig. 1. An AWS identity-based policy. It comprises a set of state-

ments, in this example, of size two. The statement at the top autho-

rizes a user, group or role to which the policy is attached the actions

dynamodb:DeleteItem and dynamodb:DeleteTable to the myTable re-

source in the AWS DynamoDB service [6]. The other statement autho-

rizes s3:GetObject to all objects within myBucket in the AWS S3 service

[7]. The mnemonic “*” is a wildcard.

conditions” [5]. Figure 1 is an example of such a policy. The
policy authorizes a user, group or role to which the policy
is attached the two actions dynamodb:DeleteItem and
dynamodb:DeleteTable on the resource arn:aws:dy-

namodb:region:accountId:table/myTable and the
action s3:GetObject on the resource arn:aws:s3:::-

myBucket/*. (An identity-based policy can also specify
“Deny” for the Effect field; however, such syntactic details
about policies are irrelevant to our work.)
Motivation and Our Work: Misconfiguration of security
policies in AWS that results in over-privilege is by now a
well-known source of insecurity of cloud applications. For
example, as CloudSploit [8] explains the so-called Capital
One Hack [9] which lead to the breach of about 100 million
pieces of private information, “at the root of the hack
lies. . . misconfiguration [that] allowed an unauthorized user
to elevate her privileges. . . ” Another incident relates to a
policy that is managed by AWS itself, which was over-

0000–0000/00$00.00 © 2015 IEEE

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 2

privileged [10]. We address the following more fundamental
question that is necessary to preclude such misconfigura-
tions: given a method c() of an AWS service that a caller
intends to invoke with arguments a, what is a least-privilege
set for the caller to be able to successfully make the call c(a)?
It is unsurprising to us that misconfigurations that result in
over-privilege occur in practice when documentation from
AWS is inadequate to answer this basic question. Worse still,
there is documentation and examples from AWS and others
of policies that are over-privileged (see Section 2 under
“Over-privilege and insufficiency from documentation” and
Section 6). A necessary building-block of a least-privilege
policy for a cloud application is a least-privilege set for a
call c(a) that the application makes.

We have answered this fundamental question for al-
most every method in a recent version of AWS’s Java API
for five services: EC2, S3, Kinesis, DynamoDB and Elastic
Transcoder, for a total of 707 methods. (We discuss in Section
5 why this is “almost every” and not “every.”) We chose
the five services based on how widely used we think they
are, and so that we consider services with a large (e.g.,
EC2), medium (e.g., S3) and small (e.g., ElasticTranscoder)
number of methods (see Table 1 in Section 5 for the exact
numbers.) Our choice of the Java API is arbitrary: we could
have adopted any of the APIs that AWS publishes; there is
no difference, as it pertains to our work.

We have devised an approach to identifying such least-
privilege sets. This has been a significant challenge (see
Section 4). We have compiled our least-privilege sets into
a publicly available database of such sets [11]. Our database
is immediately useful to developers to devise least-privilege
policies for their applications. And, it is our hope that others
augment our database so the community as a whole benefits
from improved security. Also, our methodology is effective,
as demonstrated by our ability to identify such sets at scale,
and can be used for more services and API methods, and
even, possibly, for other clouds. However, as we identify in
Section 4 and in our discussion of future work in Section 8,
such an effort would benefit greatly from AWS publishing a
test harness or other tools that enable more automation.

Notation: We adopt the following notation in the remain-
der of this paper. To denote a method or call, we write
c(). We state in each case as to whether it is a method
or call to which we refer. We typically use the mnemonic
a for the arguments to a call, and denote such a call as
c(a). To refer to a method of a particular AWS service, we
identify the AWS service, followed by a dot, followed by
the name of the method, e.g., s3.getObject(). To refer to
an action, we adopt the syntax AWS uses to refer to it, e.g.,
dynamodb:DeleteItem.

Remainder of the paper: In the next section, we discuss
classes of a first set of particularly interesting observations
we have made in the course of identifying least-privilege
sets. We have reported these to AWS. The contents of that
section complement those in Section 5 in which we make
additional observations. In Sections 3 and 4, respectively, we
propose definitions and approaches for least-privilege that
we have adopted, and the methodology we have devised
and carried out. As an illustration of the use of our database,
in Section 6, we analyze two sets of publicly available

repositories of cloud applications and identify gaps in their
policies which our database helps rectify. We discuss related
work in Section 7, and conclude with Section 8, wherein we
discuss future work as well.

2 OBSERVATIONS 1
In the course of our work, we have made several interesting
observations about specific least-privilege sets, classes of
which we discuss in this section as our first set of obser-
vations. These complement the ones we make in Section 5.
Over-privilege and insufficiency from documenta-
tion: There are instances in which documentation from
AWS recommends policies that are, simultaneously, over-
privileged and insufficient. An example of this is with
ec2.createStoreImageTask(). The documentation for
the method points, in the context of privileges, to “Permis-
sions for storing and restoring AMIs using S3 in the Amazon
Elastic Compute Cloud User Guide” [12], which suggests a
policy which authorizes 16 actions. However, we observe
that a least-privilege set of size at most seven exists [11].
(We say “at most” because a least-privilege set of size six
exists if a field in the argument is not set.) Furthermore, the
recommended policy of 16 actions does not include actions
that are necessary. For example, for ec2.createStore-

ImageTask(), our work tells us that when a particular
field, S3ObjectTags, in the argument is set, then the action
s3:PutObjectTagging is necessary; however, that action
is not part of the set of 16 actions in the recommended
policy. Thus, not only is the policy over-privileged in that
it authorizes redundant actions, it is insufficient as it does
not authorize actions that are necessary.

Nonetheless, in some ways, the recommended policy in
the documentation to which we refer above is helpful in that
it tells a developer that actions from three different services
are needed for a call to ec2.createStoreImageTask()

to succeed. There are other instances in which actions
from several different services are needed, and we are
unable to find documentation that guides us. An example is
ec2.modifyVpnTunnelCertificate(), which requires
the following actions from across three different AWS ser-
vices: ec2:ModifyVpnTunnelCertificate, acm:Re-

questCertificate, acm-pca:GetCertificate and
acm-pca:IssueCertificate. Prior to our work, it is
unclear how a developer is expected to arrive at this least-
privilege set. We suggest that this can cause a developer to
specify an over-privileged policy.
Over-privilege from requiring the wildcard: We have
discovered instances in which either the resource or the
action in an identity-based policy must be the wildcard
“*,” for a call to succeed. This is somewhat alarming as
from a security standpoint, use of the wildcard can be
seen as dangerously permissive. An example of this is
ec2.exportImage(). A least-privilege set of actions is
the singleton set {ec3:ExportImage}. However, for the
resource in an identity-based policy, it does not suffice
that the policy mentions anything more specific than the
wildcard “*”. A narrower specification of the resource, such
as “arn:aws:ec2:*::image/ami-013ad70ab73da1ff2,”
does not suffice.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 3

We made a similar observation, but with the actions
rather than the resource, for the calls kinesis.start-

StreamEncryption() and kinesis.stopStreamEn-

cryption(). Even if we enumerate all actions that start
with kinesis: in an identity-based policy, that set of ac-
tions was not sufficient. However, if we specify the action as
kinesis:*, i.e., with the wildcard, then the call succeeds.
AWS has fixed this after our report of this observation.

Over-privilege from unrelated arguments: There exist in-
stances in which changing seemingly unrelated arguments
changes the least-privilege set in a manner that under-
privileged calls can succeed. An example of this is with the
call s3.deleteObject() which takes an argument of type
DeleteObjectRequest. That argument, in turn, has two
fields, bypassGovernanceRetention and versionId.
The former is a boolean value which may be set to true or
false, and the latter may either be set or not. We observe that
when bypassGovernanceRetention is set to true and
the versionId is set, the action s3:BypassGovernance-

Retention is necessary for the call to succeed. This makes
sense given that bypassGovernanceRetention is set to
true. However, when bypassGovernanceRetention is
set to true but versionId is not set, the action s3:By-

passGovernanceRetention is no longer necessary. This
suggests the potential that under-privileged callers, who
do not possess s3:BypassGovernanceRetention can
make a successful invocation even though the argument
bypassGovernanceRetention is set to true.

Mismatch between method name and action name: It
appears that a design philosophy of AWS is to give methods
and actions the same name. For example, corresponding to
the s3.getObject() method is an action s3:GetObject.
And it is indeed the case, in several instances, that a least-
privilege set for a call is the singleton set of the action
that corresponds to the method. However, this is not uni-
versally true and in some cases, it is unclear what a least-
privilege set is. For example, one of the s3.getObject()
methods takes an argument of type GetObjectRequest,
which has a field called versionId. This field is optional;
it may either be set or not. We observe that when the
field is not set, a least-privilege set for a successful call
is {s3:GetObject}. When the versionId field is set, a
least-privilege set is {s3:GetObjectVersion}. That is,
providing s3:GetObject (as well) in the latter case would
result in over-privilege. See Appendix A for details.

Over-privilege from coarse granularity of action: Related
to the above issue of a mismatch of method and action
names is that there are instances in which a caller must pos-
sess a particular action to successfully make a call; however
the caller is then over-privileged in that they are able to
make other calls that we may not want them to be able to
make. An example of this is with s3.createBucket().
The argument of type CreateBucketRequest has a field
called acl which may be set to one of the constants
PRIVATE, PUBLIC READ, PUBLIC READ WRITE or AU-
THENTICATED READ. If the caller seeks acl to be set
to a value other than PRIVATE which is the default, the
action s3:PutBucketAcl is necessary. However, this then
is sufficient for the caller to arbitrarily change the value
associated with an ACL via the call s3.putBucketAcl().

Thus, if we want to empower a user or role to create buckets
whose acl is set to, say, AUTHENTICATED READ, we are
forced to empower that caller to also change the ACL setting
for buckets in any way they want, e.g., to PUBLIC READ.
Red herring empty least-privilege sets: For most methods,
if a caller does not possess sufficient privileges, an exception
is thrown when a call is made. However, there are methods
for which this is not the case. Even if the caller is authorized
to no actions whatsoever, the call appears to succeed in that
no exception is thrown when the call is made. However,
when one attempts to access the returned object locally in
particular ways, a local exception is thrown. This is the
case with every call that pertains to a so-called paginator
across all the five services which we have investigated,
e.g., dynamodb.queryPaginator(). Thus, if we adopt
no exception being thrown as a successful call, the least-
privilege set is the empty set for these calls. However, that
is a red herring because the returned object then throws an
exception for certain kinds of accesses to it. It is unclear
in such cases how one is to characterize least-privilege,
because some local accesses to the returned object succeed.
Also, this is inconsistent with what appears to be AWS’s
design for most methods, which is to throw an exception if
an under-privileged call is made.
Action name corresponding to method name exists but
does not suffice: There are numerous instances in which
there exists an action name that corresponds to the name
of a method; however, not only is that action necessary, but
also others for a call to succeed. A particularly egregious ex-
ample of this is the method dynamodb.restoreTableTo-

PointInTime(). Not only is dynamodb:RestoreTable-
ToPointInTime required, but also 7 other actions such as
dynamodb:Scan and dynamodb:Query. It is unclear how
a developer is to know what a least-privilege set is. We
suggest that this situation can lead to over-privilege by the
developer, for example, use of wildcards to ensure that a
legitimate caller can succeed.

Vendor Notification and Response

Over the course of the past year we communicated these
observations we have made to AWS. On the observation
with Kinesis we discuss under “Over-privilege from re-
quiring the wildcard” above, AWS has, subsequent to our
reporting the issue, fixed it.

3 DEFINITIONS AND APPROACH

In this section, we characterize least-privilege in a way that
is meaningful for our context, and associated approaches
that we have devised and used to determine least-privilege
sets for calls to AWS. In the next section, we discuss the
methodology we have devised and followed in its entirety;
the approaches we discuss in this section are part of the
methodology.

Definition 1 (Privilege). A privilege is a pair, haction, resourcei.

To us, our definition of a privilege is apparent from, for
example, identity-based policies in AWS (see Figure 1 in
Section 1 for an example). Moving on to least-privilege, the
notion of least-privilege comprises sufficiency and necessity.
That is, we deem a set of privileges to be least-privilege

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 4

if no additional privilege is needed for access (sufficiency)
and if any privilege from the set is removed, then access
is not authorized (necessity). As “access” in our context
is successful invocation of an API method, we need to
ask what happens when we make an invocation and the
caller is under-privileged. The answer, in most cases, is that
an exception is thrown, and indeed, this appears to be a
design intent of AWS. Consequently, we adopt the following
definition.

Definition 2. We say that a call c(a) fails if an exception is

thrown when we make it. Otherwise, we say that it succeeds.

Next, we recognize that a call may fail owing to causes
unrelated to authorization. For example, a resource to which
a method c() pertains may not have been allocated. Thus,
in a characterization of least-privilege and our approach to
determining a least-privilege set, we need to account for
such failures that are unrelated to authorization. A related
issue is whether we can associate a least-privilege set with a
method c() only, or whether we need to consider arguments
a to c() as well. The answer, from our observation for AWS
is that least-privilege is characterized meaningfully on a pair
hc, ai, i.e., both the method c() and arguments a to it, and
not c() only. Finally, we need to account for the possibility
that a least-privilege set is not necessarily unique because
we have no definitive evidence to that in AWS. The follow-
ing definitions capture these discussions. Constraining our
notion of success or failure of a call to authorization only
is achieved by our definition for sufficiency, specifically, by
phrasing it as an implication. The possible non-uniqueness
of a least-privilege set is addressed by our definition for
necessity.

Definition 3 (Sufficient set of privileges). Given an API

method c() in an AWS service and arguments a for it, we say

that a set of privileges P is sufficient for hc, ai if:

(caller possesses all privileges =) c(a) succeeds)

=)
(caller possesses privileges P only =) c(a) succeeds)

The above definition addresses only those situations that
the caller is able to successfully invoke c(a) when the caller
is in possession of all possible privileges. And in such a
situation, we deem the set of privileges P to be sufficient
if the possession of only P by the caller also would have
resulted in a successful invocation c(a). We intentionally do
not address situations in which the caller is unable to invoke
c(a) successfully despite possessing all privileges; to us, no
meaningful notion of “sufficient set of privileges” exists in
such situations.

Definition 4 (Necessary set of privileges). Given an API

method c() in an AWS service and arguments a for it, we say

that a set of privileges P is necessary for hc, ai if: there exists a

set Q of privileges such that P ✓ Q, Q is sufficient for c(a), and

for all p 2 P , Q \ {p} is not sufficient.

Definition 5 (Least-privilege set). Given an API method c()
in an AWS service and arguments a for it, we say that a set

of privileges P is least-privilege for hc, ai if P is sufficient and

necessary for hc, ai.

In the remainder of this section, we discuss pieces of our
methodology that pertain to our definitions. Our exposition
is as a progression: (i) satisfying the precondition in Defi-
nition 3, (ii) identifying for which arguments to a method
we determine least-privilege sets, and, (iii) given a method-
arguments pair, how we determine a least-privilege set.
Precondition in Definition 3; valid arguments: The pre-
condition in Definition 3 is, “an invocation c(a) succeeds
given that the caller possesses all privileges.” Thus, a chal-
lenge for us is that a call c(a) may fail for reasons that have
nothing to do with whether the caller possesses sufficient
privileges. That is, given hc, ai for which the call c(a) can
succeed, we need to be able to setup an environment in
which the call indeed succeeds. Effecting a successful call
is the only way for us to know whether a are indeed valid

arguments for c, i.e., arguments for which the only way the
call c(a) fails is that the caller has insufficient privileges.
For example, s3.createBucket() fails, i.e., throws an
exception, in a manner unrelated to authorization if the
bucket to which the arguments refer already exists in S3.
The manner in which we address this issue of fulfilling the
precondition in Definition 3 is to wrap a call c(a) as follows.

wrapc(a)

setupEnvc()
c(a)
teardownEnvc()

where setupEnvc() is a setup procedure and teardownEnvc()
is a teardown procedure. That is, the wrapper method
wrapc() given arguments a first invokes the setup method
that corresponds to the method c(), then invokes c(a) and
then invokes the teardown method. The property we seek
from setupEnvc() is that if a call c(a) can succeed, then
setupEnvc() ensures that it does succeed. In Section 5 we
present the total number of setupEnvc() and teardownEnvc()
methods we need.

Our above procedure wrapc(a) is correct in that it is
sufficient. Specifically, if an invocation wrapc(a) returns
successfully, then we know: (i) that setupEnvc() correctly
setup a sufficient environment for the subsequent c(a) call to
succeed, (ii) the call c(a) succeeded, and (iii) the privileges
we provided the caller are sufficient (see Definition 3).

We intentionally denote the method name “c” as a sub-
script for each of wrap, setupEnv and teardownEnv above,
and not, for example, as an argument, because this reflects
what we have actually done. That is, we have been able
to associate each setup procedure with a method c() inde-
pendent of the arguments to an invocation of c(). This may
seem like a limitation; however, the only possible negative
impact is efficiency: we may do some redundant things
within setupEnvc() from the standpoint of an invocation to
c() with particular arguments a. So long as each setupEnvc()
guarantees that the subsequent invocation c(a) succeeds,
correctness is not impacted.
Space of all valid arguments: Given the notion of a valid
argument from the discussions above, a next challenge for
us is to identify all valid arguments a for a method c(); i.e.,
all arguments a to each method c() for which there exists an
environment in which the call c(a) succeeds given that the
caller has all privileges. Enumerating all candidate a does

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 5

not scale. Therefore, we rephrase our challenge as follows.
First denote as Lc(x) and Lc(y) respectively least-privilege
sets for valid arguments x and y to c(). Now, suppose Ac is
the set of all valid arguments a for c(). Consider partitions
of Ac into equivalence classes, denote them Ac,1, . . . , Ac,n

with the properties that (i) for every i = 1, . . . , n, and
every x, y 2 Ac,i, it is the case that Lc(x) = Lc(y), and,
(ii) given any two distinct i, j, for every x 2 Ac,i and
y 2 Ac,j , it is the case that Lc(x) 6= Lc(y). Our challenge,
for each method c(), is to identify at least one member
of every such equivalence class Ac,i of its arguments. We
would then have identified every possible least-privilege set
for c(). For example, based on our methodology we have
identified that n = 1 for ec2.createImage() and n = 5
for s3.createBucket() [11].

The manner in which we address this challenge is to
perceive it as similar to the challenge encountered in soft-
ware testing: with what inputs should a piece of software be
run so the set of inputs comprehensively tests the software?
In our case, what “comprehensive” means is different from
what it customarily means in software testing. Also our suc-
cess criterion, i.e., whether a test passes or not, is different
from what is customary in software testing. Nonetheless,
feedback directed random test generation [13], specifically
as realized by Randoop [14], has been effective for us.

To be able to use feedback directed random test gener-
ation, we first need to identify a superset of possible argu-
ment values. To identify such a superset, we followed the
category-partition method which was originally proposed
for functional testing [15]. In the category-partition method,
a human tester first identifies categories of inputs. Each
category is then perceived as a partition of the input space,
and a representative input from each partition is chosen for
testing. The category-partition method is a good fit for us
because we seek exactly to partition the space of all valid
arguments. For us, each partition corresponds to a unique
least-privilege set.

We first identify a set of all representatives for each
argument in the arguments a to a method c(). For ex-
ample, one of the s3.createBucket() methods takes
as argument an object of type CreateBucketRequest.
A CreateBucketRequest is composed of several fields.
One of these fields is aclAsString. For an argument of
type CreateBucketRequest to be valid for the method
s3.createBucket(), the constituent field aclAsString

must be one of five distinct valid values — the empty
string, and four constant strings, and each of these val-
ues belongs to a partition of its own. Another field in
CreateBucketRequest is bucket, which is the name of
the bucket to be created, which is also of type String.
There are constraints on this string for the call c(a) to
succeed: it must be at least three characters long and must
not begin with a particular prefix. The remaining possible
string values are all valid and belong to the same partition.
There is also a field objectLockEnabledForBucket in
CreateBucketRequest, which is a boolean, i.e., takes
value either true or false, each of which is in a partition
of its own. Thus, if aclAsString, bucket and object-

LockEnabledForBucket were the only arguments to a
call to s3.createBucket(), we would have 5⇥1⇥2 = 10
possible combinations of arguments with which to invoke

the method. It is this set of arguments which are provided
as part of the configuration to Randoop, and Randoop
then employs feedback directed random testing. In reality,
CreateBucketRequest has several more fields and the
total number of valid arguments we determine using the
above approach is more than 8000. Randoop provides a way
to choose from amongst those arguments, and an order in
which the arguments are tried in invocations of the method.

A consequence of adopting the above approach is that
our methodology is not necessarily complete; we do not
necessarily identify every possible partition Ac,i to which
we refer above. That is, the database we have built which
maps a pair hc, ai where c() is a method and a is a valid
argument for it does not necessarily contain an a 2 Ac,i for
every partition Ac,i for the method c(). This is the same
situation that the software testing method that we have
adopted encounters: we cannot guarantee that the set of
inputs comprehensively tests the software.
Least-privilege set: Suppose we have chosen to identify
a least-privilege set for c(a), i.e., for an invocation of the
method c() with arguments a. How exactly do we go about
identifying one? Our first-cut approach is expressed by the
algorithm, LP_linear in Figure 2.

Apart from the method c() and arguments a for it,
LP_Linear takes as argument a set of privileges S. It
invokes as sub-routine a method failure() that we construct.
The method failure() returns true if the invocation wrapc(a)
fails, and false if it succeeds, and we ensure that wrapc(a)
fails if and only if the call c(a) within it fails. (Recall, from
the start of this section, that “fails” means “an exception
is thrown.”) That is, setupEnvc() and teardownEnvc() are
guaranteed to not fail. If the set of privileges S is not
sufficient for c(a), then LP_Linear returns error in Line (2).

Otherwise, Corollary 1 below, which relies on Theorem
1, establishes that the returned Result is necessary. We
have also checked for every returned Result for each pair
hc, ai for which we have generated such a set, that that set is
sufficient. We have done this by invoking wrapc(a) with the
returned Result as the set of privileges the caller has and
observing that it succeeds. Corollary 2 below establishes that
this means that each sufficient set S with which we seeded
our runs of LP_Linear has only one subset that is least-
privilege, and this subset is the returned Result. Thus, we
have not identified any method in AWS which has more
than one least-privilege set. However, our work does not
preclude this possibility. We point out also that we have not
identified two actions whose names are different, but are
the same from the standpoint of privilege. By Corollary 2,
LP_Linear would identify such actions if it is provided as
argument an S that includes both privileges that correspond
to those actions by returning a Result that is not sufficient.

Theorem 1. Suppose S is a sufficient set of privileges, and

suppose L1, . . . , Ln are all the distinct subsets of S each

of which is least-privilege for hc, ai. Then, Result that

LP_Linear(c, a, S) returns is L1 \ . . . \ Ln.

Proof. Suppose some privilege p 2 L1 \ . . . \ Ln. Then
S \ {p} is not sufficient — if it is, there exists some least-
privilege set, denote it Ln+1 ✓ S \ {p}, that is distinct from
each of L1, . . . , Ln because p is in all of L1, . . . , Ln. This
is a contradiction to the assumption that L1, . . . , Ln are all

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 6

LP_Linear(c, a, S)

1 Assign the caller the privileges in S
2 if failure(wrapc(a)) then return error

3 Result ;
4 foreach p 2 S do
5 Assign the caller the privileges in S \ {p}
6 if failure(wrapc(a)) then
7 Result Result [{p}
8 return Result

LP_Binary(c, a, S)

1 if |S| < 2 then return LP_Linear(c, a, S)
2 S1 half the members of S
3 S2 S \ S1

4 Assign the caller the privileges in S1

5 if failure(wrapc(a)) then
6 Assign the caller the privileges in S2

7 if failure(wrapc(a)) then
8 return LP_Linear(c, a, S)
9 else return LP_Binary(c, a, S2)

10 else return LP_Binary(c, a, S1)

Fig. 2. Our algorithms for determining least-privilege sets.

such distinct sets. Thus, p 2 Result that is returned by the
algorithm because for that choice of p in the foreach loop of
Line (4), the if condition of Line (6) must evaluate to true,
and we add p to Result in that iteration of the foreach loop
in Line (7). Now suppose some q 62 L1 \ . . . \ Ln. To prove
that q 62 Result that is returned, consider the iteration of
the foreach loop of Line (4) in which the privilege q is chosen
from S. We know that S \ {q} is sufficient because there
exists i 2 {1, . . . , n} such that Li ✓ S \ {q}. Thus, the if
condition of Line (6) evaluates to false for this iteration, and
we do not add q to Result in this iteration of the foreach
loop, and therefore, as that is the only moment we could
possibly add q to Result, we never add q to Result.

Corollary 1. If S is sufficient for hc, ai, then Result that

LP_Linear(c, a, S) returns is necessary.

Proof. The returned Result is L1 \ . . . \ Ln by Theorem
1, L1 \ . . . \ Ln ✓ L1, L1 is necessary because it is least-
privilege, and every subset of a necessary set is necessary.

Corollary 2. Suppose S is sufficient for hc, ai. Then, the returned

Result from LP_Linear(c, a, S) is sufficient if and only if

there is only one subset of S that is least-privilege.

Proof. For the “if” direction, we assume that S has only
one subset that is least-privilege. Then, in the statement of
Theorem 1, n = 1, and the returned Result = L1 which
is sufficient because L1 is least-privilege. For the “only
if” direction, suppose the returned Result, denoted R, is
sufficient. By Corollary 1, it is also necessary and therefore
R is least-privilege. Suppose T ✓ S and T 6= R such that T
is also least-privilege. Now, we have two possibilities only.
(i) T � R — this cannot be true because T is least-privilege
and therefore necessary, and no strict superset of a sufficient
set, R in this case, is necessary. (ii) T 6◆ R and T 6= R —
then, by Theorem 1, the returned Result✓ R\T ⇢ R. This
contradicts the assumption that R is the returned Result

because no strict subset of a set is the set itself. Therefore,
no such T exists.

We have further improved our efficiency of converging
to a least-privilege set in practice by adopting the algorithm
LP_Binary in Figure 2, which, as its name suggests, re-
alizes a kind of binary search. We show an example of a
run of LP_Binary for the method s3.copyObject() for
a particular starting S in Figure 3. In the next section, we
clarify other pieces of our methodology that are needed to

Fig. 3. An example run of LP_Binary, and a consequent run of

LP_Linear for s3.copyObject(). Under LP_Binary at the top, an

unshaded box is a sufficient set of actions; a shaded box is a set that

is not sufficient. For LP_Linear, an unshaded box is a privilege we

include in Result; a shaded box, we do not.

generate the corresponding policy, e.g., the manner in which
we identify the resources.

We point out that LP_Binary is not quite the same,
for example, as binary search for an item in a sorted array.
Because in an invocation of LP_Binary, both the checks in
Lines (5) and (7) may fail, i.e., evaluate to true, in which case
we fall back to LP_Linear in Line (8). Also, we point out
that if LP_Binary is invoked with S a least-privilege set,
then we are guaranteed to invoke LP_Linear either in Line
(1) or Line (8). That is, LP_Binary relies on LP_Linear

to confirm that it has indeed converged to a least-privilege
set. In the worst case, LP_Binary is no more efficient than
LP_Linear. However spot checks tell us that it has helped
us converge faster in practice.

4 METHODOLOGY
In this section, we discuss the methdology we have devised
and carried out; Figure 4 presents it. We have attempted to
automate as many steps as we are able. However, some of
our steps do require manual intervention; these are shown
unshaded in Figure 4. A side-effect of our work is our obser-
vation that AWS really needs to make available a software
harness so one can fully automate such a methodology. We
now proceed to describing the steps in our methodology.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 7

Fig. 4. The steps in our methodology for identifying least-privilege sets. Steps that require manual intervention are unshaded.

Acquire client API as jar: Our first step is to acquire the
client API for an AWS service. For example, for S3, this is
AWS Java SDK :: Services :: Amazon S3 [16]. The version of
each API we have adopted is 2.16.60, which was the latest
version that was available at the time we were ready with
our process. We downloaded the client API as a jar from
the Maven Central Repository [17] using the Gradle build
automation tool [18].
Disassemble jar; extract methods: We then disassembled
the jar file in the IntelliJ integrated development environ-
ment [19] to access the method declarations.
Remove methods that are not calls to AWS: Not all
methods in a client API are calls to AWS and consequently,
the notion of a least-privilege set is not meaningful for
those methods. An example is a constructor method for the
client API class. We employed heuristics to first arrive at a
superset of methods we would remove, and then inspected
this superset for methods we should retain. For example,
part of the heuristic is to identify static methods; for example
for the S3 client, these are create(), builder() and
serviceMetadata(). None is a call to AWS and therefore
all were removed.
Partition methods for setupEnv(): As we discuss under
“Precondition in Definition 3; valid arguments” in the pre-
vious section, for each method c(), we need to identify
what arguments a are valid, i.e., for what a there exists an
environment in which c(a) succeeds if the caller has all priv-
ileges. As we say there, our approach was to first partition
the methods based on whether each method in a partition
can have the same setupEnv() procedure. There is a trade-off
in placing two methods in the same partition. The larger a
partition, the fewer the total number of partitions, but the
more likely we have redundant setup being performed in
setupEnvc() as it pertains to a method c(), which impacts
the time it takes to converge to least-privilege sets for c().
Devise setupEnv(), teardownEnv() for each partition: Once
we partitioned the methods as we discuss above, we de-
vised the setupEnv() and teardownEnv() methods that are
common to every method in a partition. For example, we
use the same setupEnv() and teardownEnv() methods that
we devised for both dynamodb.deleteBackup() and
dynamodb.updateContinuousBackups(). Similarly, for
both ec2.describeInstances() and ec2.describe-

VpcEndpoints(), we use the same setupEnv() and
teardownEnv() methods, which happen to be empty.
Identify categories and corresponding argument val-

ues: Once we had the wrapper methods for each API
method, we moved on to the arguments for each method.
As we discuss under “Space of all valid arguments” in
the previous section, for each method, we went through
one argument at a time, and identified a set of values for
that argument such that all categories of the argument are
covered. From the method declarations and argument types
to each method that we had extracted in the first two steps,
we automatically drilled down to basic Java object types
such as String and Integer. Our output from this part of
the process was a hierarchical JSON file where a parent node
is an opaque type, and a child node is either a basic Java
type or one step lower in our drilling down towards a basic
Java type. We had to pay special attention to composite data
types such as List. Typically, an instance of type List is
further parameterized by the type of object the list contains,
which may be of a type that is defined by AWS. We would
extract and drill down on that parameterized type.

Once we had such a JSON file with a hierarchy which
bottoms-out in basic Java types, we then automatically
created code-snippets to associate values with objects. For
example, for an object of type String, we would asso-
ciate the Java constant null, an empty string " " and
a non-empty string. These values are a starting point in
establishing categories for each argument and choosing a
value for each category for that argument. As we mention
as an example under “Space of all valid arguments” in
the previous section, for the aclAsString argument to
s3.createBucket(), we arrived at five different cate-
gories and therefore five different values. There are two
properties we need to keep in mind: whether an argument
value would result in an erroneous call, and whether we had
addressed all categories. For example, for aclAsString in
s3.createBucket(), a value of null results in a call that
fails. Therefore, it is not a candidate argument value for the
next step. To determine whether a candidate value would
result in a failed call, we would invoke the method.
Randoop: Once we have a superset of values for arguments
for each method, we then use Randoop [14] to employ
feedback generated random testing to cull the set of argu-
ments. For example, the set of more than 8000 arguments for
s3.createBucket() was culled to a set of size 31 only. We
configured Randoop, and wrote post-processed its output.
The output of this step is a set of arguments Ac for each
method c(). Our focus in the next step was then narrowed
to pairs hc, ai for every c() and every a 2 Ac.
Identify resources: Our next step was to identify resources
that would appear in an identity-based policy we would

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 8

include in our database. That is, this step identifies all
resources that must appear as the second component in an
haction, resourcei pair that is a privilege. Once we had the
output pairs of methods c() and arguments a, we identified
a superset of resources that would be associated with any
privileges. This requires an understanding of the semantics
of c(a), i.e., what the method c() does when invoked with
arguments a, and trial-and-error. While carrying out the
trial-and-error, we would grant a caller all actions to every
resource. In our database, a resource appears as the second
component of a least-privilege set only if at least one action
needs to be authorized to it.
Identify sufficient sets of actions: For each pair hc, ai, we
then identified a sufficient set of actions Sc,a. The intent
was for this Sc,a to be the third argument to a call to
LP_Binary to then identify a least-privilege set for c(a).
As we discuss under “Least-privilege set” in the previous
section, we sought two properties for Sc,a: it needs to be
sufficient, and it should have only one subset that is least-
privilege. This required checking whether there exists an
action with the same or similar name as c(), consulting doc-
umentation, various user manuals and technical posts on the
Internet. Engaging in this step of the process, in particular,
demonstrated to us the severe lack of quality documentation
with regards to even sufficient sets of actions for c(a), let
alone least-privilege sets. We could have simply choosen
large sets of actions for Sc,a; for example, we could have
chosen all possible actions. However, then, the cardinality
of Sc,a would have been more than 1000. Indeed, even if
we had considered only actions that correspond to the five
AWS services we have considered, the number of actions
is more than 600 (see Appendix A for details). This would
have resulted in each invocation of LP_Binary taking a
prohibitively long time — a call to AWS can, in some cases,
take minutes.

Another issue is that considering only the actions from
the five services would not have identified necessary actions
in all cases, as there exist methods for which an action from a
service that is not one of the five we considered is necessary,
e.g., an action with prefix “iam:”. To mitigate this, we
identified a sufficient set Sc,a for each hc, ai and grouped
pairs of hc, ai together based on the presumed semantics of
c() such that a single S set was sufficient for each of them.
LP_Binary: Our final step was to run LP_Binary from
the previous section to identify least-privilege sets with
arguments hc, a, Sc,ai as we discuss in the previous section.
Part of this process is a step that is not part of LP_Binary
as we present it in the previous section; this was to check
that the returned Result from a run of LP_Binary was
indeed sufficient. As we mention in the previous section,
in every instance, the answer to this question was “yes.”
That is, we did not identify any method for which there is
more than one least-privilege set. The outputs of this last
step comprise our database [11].

5 OBSERVATIONS 2
In this section, we present observations in addition to the
ones we discuss in Section 2. We remind the reader that
in AWS parlance, which we adopt, an action is a privilege
or permission. A caller needs to be authorized to certain

setupEnv()
and tear-
downEnv()
methods

methods af-
ter third step
of methodol-
ogy

methods
� 1 least-
privilege set
identified

DynamoDB 18 56 56
EC2 275 547 507
Elastic
Transcoder 17 20 20

Kinesis 17 28 28
S3 22 97 96
Total 349 748 707

TABLE 1

The number of methods in each service that remained after the third

step, “Remove methods that are not calls to AWS” in our methodology,

and the number for which we identified at least one least-privilege set.

distinct ac-
tions in least-
privilege sets

distinct ac-
tions of ser-
vice in least-
privilege sets

distinct
actions of
service in
database

DynamoDB 50 48 48
EC2 426 408 408
Elastic
Transcoder 16 16 16

Kinesis 27 27 27
S3 70 69 69

TABLE 2

Actions in least-privilege sets. The column “# distinct actions in
least-privilege sets” is the number of actions of any service that

appear in a least-privilege set of a method of a particular service. The

next column is the number of those actions that are of the service itself.

The last column is the number of distinct actions of a service that

appear anywhere in our entire database of least-privilege sets.

actions to be able to successfully invoke a method. Each
action and method belongs to an AWS service. The name
of an action identifies the service to which it belongs, e.g.,
“ec2:...” and “s3:....”

Table 1 reports the number of setupEnv(), teardownEnv()
pairs we created for each service, the number of API meth-
ods for each service that we were left with after the third
step, “Remove methods that are not calls to AWS,” in our
methodology from the previous section, and the number for
which we have identified at least one least-privilege set. As
the table shows, for one method in S3 and 40 methods in
EC2, we were unable to identify any least-privilege set. The
broad reason is that we were unable to effect a successful
invocation to any of those methods. The specific reason
differs by method. In some cases, the cost is too prohibitive
for us, e.g., API methods that require AWS outpost [20].
In some other cases, the method pertains to the so-called
EC2-classic platform, which is not available to us as our
AWS accounts were created later than 2013 [21]. In yet other
cases, notwithstanding our best efforts to setup an adequate
environment to effect a successful call, we were unable to,
and the error messages were unhelpful.
Actions in least-privilege sets: Table 2 reports information
on actions that appear in the least-privilege sets we have
identified [11]. The column “# distinct actions in least-
privilege sets” is the total number of distinct actions that
appear in least-privilege sets for methods in a particular
service. For example, for methods in EC2, the total number
of distinct actions across all least-privilege sets we have
identified is 426. The next column, “# distinct actions of

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 9

least-privilege sets by cardinality
0 1 2 3 4 5 6 7 8

DynamoDB 1 44 2 0 0 0 0 0 2
EC2 1 386 36 7 2 1 2 1 0
Elastic
Transcoder 1 16 0 0 0 0 0 0 0

Kinesis 1 27 0 0 0 0 0 0 0
S3 1 68 5 3 4 2 0 0 0

TABLE 3

The cardinalities of distinct least-privilege sets we identified for each

service. For example, DynamoDB has two distinct least-privilege sets

of cardinality 8 each across all its method-argument pairs that appear

in our database.

service in least-privilege sets,” is the number of actions
that are of the service itself; e.g., the number of actions
with prefix “ec2:” that appear in any least-privilege set for
methods in EC2 is 408. The last column, “# distinct actions
of service in database,” are actions of a service, e.g., actions
with prefix “ec2:”, that appear in any least-privilege set
across all five services in the database. For example, if an
action with prefix “s3:” appears in a least-privilege set
of a method “ec2...”, this would be counted in this last
column, but not in the column immediately prior.

We observe, in Table 2, that for all five services we have
examined, the values in the last column are identical to
the immediately prior column. This means that an action
appears in a least-privilege set in our database only if it
appears in a least-privilege set of a method of the same
service to which the action belongs. For example, if an action
with prefix “ec2:” appears in a least-privilege set for a
method in S3, then that action appears also in some least-
privilege set for a method in EC2. This is unsurprising. We
observe also that the overwhelming number of actions that
appear in least-privilege sets we have identified for a service
are that of a service itself. The biggest gap is with EC2 in
which 426�408 = 18 actions that do not have prefix “ec2:”
appear in least privilege sets for ec2....() methods. Also,
actions from seven AWS services other than the five whose
methods we have examined appear in our database, e.g.,
iam:, tiros: and acm:. Yet another observation is that for
none of the five services we have examined do all actions
of that service appear in the least-privilege sets we have
determined for methods of that service. (See Appendix A
for details.) This suggests a possibility that there are actions
that appear in no least-privilege set. We leave further inves-
tigation of this for future work.
Number and cardinalities of least-privilege sets: Table 3
shows, for each of the five services we consider, the number
of distinct least-privilege sets with a particular cardinality.
Table 4 shows the number of API methods in each service
that have a particular number of distinct least-privilege sets.
The latter number, i.e., the number that is the heading of
each of the last four columns of Table 4, is the number of
equivalence classes, n, to which we refer under “Space of all
valid arguments” in Section 3.

We observe from Table 3 that every one of the five ser-
vices has a method with a “red herring empty least-privilege
set” as we call it in Section 2. Also, in overwhelmingly many
cases, a least-privilege set is a set of size one. This appears
to validate the mindset that indeed, a design intent of AWS
is to have one action per method as its least-privilege set.

methods by # distinct least-privilege sets
1 2 3 4

DynamoDB 52 0 1 3
EC2 479 28 0 0
Elastic
Transcoder

19 1 0 0

Kinesis 28 0 0 0
S3 83 9 2 2

TABLE 4

The number of methods in each service with particular numbers of

distinct least-privilege sets. So, for example, S3 has 9 methods each of

which has two different least-privilege sets. This is the same as the

number, n, of equivalence classes to which we refer in Section 3.

Repo # apps # apps with
policy

least-privilege
policies

AWS 15 15 0
Serverless, Inc. 68 21 9

TABLE 5

Data on two publicly available repositories. The “# apps” is the number

of applications in the repository that exercise at least one of the

services we have considered: EC2, S3, DynamoDB, Kinesis and

Elastic Transcoder. We analyze a policy against the least-privilege sets

we have determined only.

However, as Table 3 shows, this is not always the case.
We have methods with a somewhat large cardinality for
the least-privilege set, e.g., two in DynamoDB each of size
eight, and several methods for which a least-privilege set
has cardinality > 1, e.g., in S3.

Table 4 suggests that in overwhelmingly many cases, a
least-privilege set is a function of the method only, and not
arguments to it. This is good news for a developer who seeks
to devise a least-privilege policy for their cloud application.
However, as the table shows, this is not always the case. Our
database informs a developer as to which methods these are.

6 EXAMPLE USES OF OUR DATABASE

In this section, we discuss work we have carried out
in demonstration of the utility of our database of least-
privilege sets. In Section 6.1 we discuss two repositories,
each of which contains several snippets of serverless appli-
cations. In Section 6.2, we discuss two full-fledged serverless
applications. All of these have identity-based policies that
have been published alongside, against which we are able
to compare policies that would have been devised had our
database of least-privilege sets been available.

6.1 Two Repositories
In this section, we discuss least-privilege in the context
of serverless applications that have been made available
publicly by (i) AWS [22], and, (ii) Serverless, Inc. [23]. Table
5 presents our quantitative observations.
AWS repository: This is a repository from AWS that has
been made available for developers to adopt in their own
applications. We have analyzed the Lambda functions that
have been written in Javascript in that repository, and
the policies that have been published for each. Customer-
managed policies, which is our focus, are published as so-
called policy templates, which allow for placeholder values
for resources. AWS publishes such policy templates [24].

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 10

As Table 5 indicates, there are 15 applications in the
repository, with policies alongside, that invoke a method
from at least one of the five AWS services we have con-
sidered. We find that none of the policies adheres to least-
privilege. An example of over-privilege from the repository
is for the Microservice HTTP Endpoint application [25].
As the template.yaml file there indicates, it adopts the
DynamoDBCrudPolicy that is part of the policy templates
published by AWS [24]. For the application, that policy is
over-privileged. The application needs four actions only.
DynamoDBCrudPolicy grants a number of additional, re-
dundant privileges.
Serverless, Inc. repository: The intent of this repository
seems to be the same as the one from AWS; for developers
to be able to adopt and adapt in their own applications. The
repository contains a total of 68 applications for AWS, all of
which exercise one of the five services that we have consid-
ered. As Table 5 indicates, 21 of the 68 applications have a
policy published alongside and only those 21 applications
make calls to AWS services. The others are written so they
can be deployed in AWS Lambda, but either have code-logic
only, or invoke non-AWS services only. We find only nine of
the 21 to be least-privilege.

Both least-privilege and over-privileged policies in this
repository are less straightforward than the ones in the AWS
repository. For example, policies with more than one action
are amongst those that are least-privilege; for example, an
application that needs two actions on the same resource
[26]. Amongst the policies that are over-privileged, we have
some whose cause is the use of wildcards [27]. We also have
policies with redundant actions, for example, one that grants
six actions, when only five are needed [28].

6.2 Two Applications
We have looked also at two full-fledged applications for
which identity-based policies have been published along-
side, which we discuss in this section. The two applications
are for a Bookstore [29] and for a retail outlet [30].
The Bookstore application: The Bookstore application [29]
emulates Amazon’s customer website, with functionality
such as those to search books, add to carts, and view orders.
The application has a total of nine Lambda functions. The
policy that has been published with it, unfortunately, is
grossly over-privileged. The root cause for this appears to
be that the same role is assumed by all Lambda functions
when they run. The policy that is attached grants all privi-
leges across all those Lambda functions to the role, thereby
resulting in over-privilege. A more careful design would
be for each Lambda function whose least-privilege set is
distinct to be associated with a role of its own.

Worse still, even if we consider the union of method calls
made across all the Lambda functions in the application, the
policy is over-privileged. For example, it grants s3:Get*

and s3:List* actions, i.e., every action that begins with
“s3:Get” and “s3:List,” which is redundant. Indeed,
none of the nine Lambda functions exercises S3; therefore
any action from S3 that is awarded is redundant. Actions
from DynamoDB are excessive as well.
The Hello, Retail! application: Hello, Retail! is an ap-
plication for a retail store [30]. It has won a serverless

architecture award [31]. We analyzed 13 of the Lambda
functions of Hello, Retail! We found only a somewhat
subtle problem with over-privilege that we discuss below.
Every policy in Hello, Retail! that we examined appears to
be “hand-crafted” carefully, and not, for example, blindly
copied from other sources. We observe that in Hello, Re-
tail!, unlike in the Bookstore application we discuss above:
each Lambda function assumes a distinct role when it
runs. The only instance of over-privilege we found regards
a grant of kinesis:DescribeStream and kinesis:-

ListStreams to a particular Lambda function. The issue
is that the kinesis:DescribeStream and kinesis:-

ListStreams actions are needed only when a Lambda
function is registered to be the callback when a Kinesis event
happens. Those actions are not needed subsequently.

Summary We have found that the vast majority of identity-
based policies that we have examined and discussed in this
section suffer from over-privilege. We caution developers
from blindly adopting those policies in their applications.

7 RELATED WORK

Our work deals with least-privilege, a security design prin-
ciple that, to our knowledge, was first articulated by Saltzer
and Schroeder [32]. That work discusses a number of other
principles as well, that are considered important to the
design of secure systems. Apart from least-privilege, our
work is at the intersection of several topics that have been
addressed in research in information security: authorization
and access control languages and systems, checking for
security properties in real-world systems, and security of
cloud computing. It is well beyond our scope to discuss
each of these comprehensively. Rather, in the remainder of
this section, we focus on work that we see as most closely
related to ours.

A piece of work that is related closely to ours is that of
Felt et al. [33]. Our objectives are similar to theirs, but that
work is for Android. That work exercises the Android API
to determine the permissions needed for each API method,
and based on that determination, assesses several apps as
to whether they adhere to least-privilege. Thus, we are
strongly similar from the standpoint of objectives; however,
the different settings, Android vs. AWS, result in different
technical details and findings. We observe that since that
work, and perhaps as a consequence, Android now provides
a RequiresPermission annotation [34] so a piece of code
in an app can clearly call out the permissions it requires.

Another piece of work that is related to ours and focuses
on AWS is of Shimizu et al. [35]. The objective of their work
is to find least-privilege policies for Infrastructure as Code
(IaC) templates, specifically AWS CloudFormations, which
are used to provision resources in a cloud environment. Our
work differs from theirs in the sense that we are finding a
minimum set of privileges for an API method, a building-
block for a cloud application, and involves the role of ar-
guments for an API method changing the least-privilege set
for that API method. The work of Sanders et al. [36] focuses
on minimizing privilege errors in creating Attribute Based
Access Control (ABAC) policies for a system by mining
through audit logs. They view least-privilege as a balance

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 11

between minimizing under-privilege and over-privilege as-
signment errors. This is different from the manner in which
we characterize least-privilege. Furthermore, our work does
not deal with specific classes of policies such as ABAC
policies, but rather considers privileges that are needed to
invoke an API method in AWS.

The other pieces of work that are related to ours are ones
that assess aspects of security in AWS. The work of Balduzzi
et al. [37] identifies security risks from the use of virtual
server images from public catalogs of AWS. It identifies that
some of these risks can allow unauthorized, remote access
to an AWS application. As such, it is different from our work
as we determine least-privilege sets for API calls to AWS.

Then, there is work from AWS itself. There is work on
security best practices for AWS [38], the work of Cook [39]
that discusses the use of formal methods for security within
AWS, and the work of Backes et al. [40] that discusses an
automated approach to reasoning about AWS access poli-
cies. These endeavours underlie AWS services that provide
security assessments: AWS Config [41], Amazon Macie [42],
AWS Trusted Advisor [43], Amazon GuardDuty [44] and
AWS IAM Access Analyzer [5]. None of these calls out least-
privilege as a property of interest, nor do we see mention of
properties that seem to lie at the same level of abstraction.

The discussions in the first of these, security best prac-
tices [38], is at a higher level than least-privilege. A rep-
resentative example of a recommendation there is, “Use
bucket-level or object-level permissions alongside IAM poli-
cies to protect resources from unauthorized access and to
prevent information disclosure, data integrity compromise,
or deletion.” The work of Backes et al. [40] mentions a
number of properties; for example: “. . . [checks for] AWS
Lambda Functions granting unrestricted access, . . . S3 buck-
ets granting unrestricted read access, . . . S3 buckets granting
unrestricted write access, deny putObject requests that do
not have server side encryption, and deny actions that do
not allow https traffic.” These are at a level of abstraction
lower than least-privilege, in that it is possible that one or
more of these properties is needed for least-privilege in an
application, but as to whether and how, is a missing link.
Furthermore, the mapping of an API method to privileges,
the focus of our work, does not seem to be information that
is available readily. It would be interesting to investigate
also whether the expressive power of the approaches and
tools that are the current focus of such techniques within
AWS suffices for a property such as least-privilege.

Of all the AWS services we list above, the AWS IAM
Access Analyser [5] seems related most closely to our work.
It is based on the work of Backes et al. [40], and it helps
identify what it calls unintended access to resources. It does
so by first identifying what it calls a zone of trust, and then
checking for accesses by entities from outside this zone.
While the AWS IAM Access Analyzer can tell us whether
some policies, particularly resource-based policies, are least-
privilege, it is unclear how one should go from a warning
issued by the analyzer to a least-privilege policy. Thus, we
see the Access Analyzer as alerting us to the possibility that
a policy is not least-privilege, but not solving the problem
of determining least-privilege.

8 CONCLUSIONS

We have addressed least-privilege for calls to AWS. We have
observed that identifying least-privilege sets is not easy and
necessitates a clear characterization of what we mean by
a least-privilege set, which we provide, and a somewhat
painstaking black-box experimental process, which we have
devised and carried out. We have identified least privilege
sets for 707 methods across five different AWS services;
46 of these methods are associated with more than one
least-privilege set because the least-privilege set for those
methods changes with their arguments. We have reported
27 observations, which we have discovered through our
work, to AWS via their vulnerability reporting program over
the course of the past year, and discussed classes of those
observations in this work. Some of the observations are
alarming to us, e.g., documentation from AWS that suggests
a policy that is simultaneously over-privileged and insuffi-
cient for particular methods, and methods which seem to
require the specification of the wildcard for the resource or
actions in a policy. Some others suggest inconsistent design
that can impede security policy configuration, e.g., “red
herring” empty least-privilege sets. We have studied also
two repositories of Lambda functions, and two full-fledged
applications, all publicly available, and found that over-
privilege is pervasive in them. We have made our database
of least-privilege policies available publicly [11]. Developers
can immediately use our database to devise least-privilege
policies for their cloud applications, and we hope that the
broader community contributes to the database.

There is tremendous scope for future work. Our work
involved steps that were heavily manual (see Figure 4 in
Section 4). It would be meaningful to automate the manual
steps as much as possible because AWS itself has several
more than the five services we have considered, and we
would want to repeat this work for those services, and
for other cloud providers such as Google Cloud and Mi-
crosoft Azure. There are also a number of specific questions
our work has thrown up which we have not answered;
for example, (i) are there actions that are members of no
least-privilege set?, and, (ii) do there exist actions that are
distinct in that they have different names, but are identical
from the standpoint of privilege? There is also the question
of whether mechanisms can be conceived and created to
automatically use a database such as the one we have
created with least-privilege sets to secure an entire cloud
application. For example, could we introduce new types
and associated rules so we are able to automatically identify
a least-privilege policy for code that resides in a cloud
application?

REFERENCES

[1] Amazon Web Services (AWS), “Types of cloud computing,” https:
//aws.amazon.com/types-of-cloud-computing/, Apr. 2020.

[2] ——, “https://aws.amazon.com/,” Apr. 2020.
[3] ZDNet, “Top cloud providers 2019,”

https://www.zdnet.com/article/top-cloud-providers-2019-
aws-microsoft-azure-google-cloud-ibm-makes-hybrid-move-
salesforce-dominates-saas/, Aug. 2019.

[4] Amazon Web Services (AWS), “Security Overview of AWS
Lambda,” https://d1.awsstatic.com/whitepapers/Overview-
AWS-Lambda-Security.pdf, Apr. 2019.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/types-of-cloud-computing/
https://aws.amazon.com/types-of-cloud-computing/
https://www.zdnet.com/article/top-cloud-providers-2019-aws-microsoft-azure-google-cloud-ibm-makes-hybrid-move-salesforce-dominates-saas/
https://www.zdnet.com/article/top-cloud-providers-2019-aws-microsoft-azure-google-cloud-ibm-makes-hybrid-move-salesforce-dominates-saas/
https://www.zdnet.com/article/top-cloud-providers-2019-aws-microsoft-azure-google-cloud-ibm-makes-hybrid-move-salesforce-dominates-saas/
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3171740, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XXXX, NO. YYYY. 12

[5] ——, “AWS Identity and Access Management – User Guide,”
https://docs.aws.amazon.com/IAM/latest/UserGuide/, Apr.
2020.

[6] ——, “Amazon DynamoDB – Fast and flexible NoSQL database
service for any scale,” https://aws.amazon.com/dynamodb/,
Apr. 2020.

[7] ——, “Amazon S3 – Object storage built to store and retrieve any
amount of data from anywhere,” https://aws.amazon.com/s3/,
Apr. 2020.

[8] CloudSploit, “A Technical Analysis of the Capital One
Hack,” https://blog.cloudsploit.com/a-technical-analysis-of-the-
capital-one-hack-a9b43d7c8aea, May 2020.

[9] Appsecco, “An SSRF, privileged AWS keys and the Capital One
breach,” https://blog.appsecco.com/an-ssrf-privileged-aws-keys-
and-the-capital-one-breach-4c3c2cded3af, May 2020.

[10] Sharath AV, “AWS Security Flaw which can grant admin access!”
https://medium.com/ymedialabs-innovation/an-aws-managed-
policy-that-allowed-granting-root-admin-access-to-any-role-
51b409ea7ff0, May 2020.

[11] P. Gill, W. Dietl, and M. Tripunitara, “Database of least-
privilege policies for AWS,” https://github.com/puneetgill05/
AWSDatabase, Apr. 2022.

[12] Amazon Web Services (AWS), “Store and restore an AMI
using S3,” https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ami-store-restore.html#ami-s3-permissions, Aug.
2021.

[13] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in ICSE 2007, Proceedings of the

29th International Conference on Software Engineering, Minneapolis,
MN, USA, May 2007, pp. 75–84.

[14] Randoop, “Randoop: Automatic unit test generation for Java,”
https://randoop.github.io/randoop/, Aug. 2021.

[15] T. J. Ostrand and M. J. Balcer, “The category-partition method
for specifying and generating functional tests,” Commun.

ACM, vol. 31, no. 6, pp. 676–686, 1988. [Online]. Available:
https://doi.org/10.1145/62959.62964

[16] Amazon Web Services (AWS), “Interface S3Client,”
https://sdk.amazonaws.com/java/api/latest/software/
amazon/awssdk/services/s3/S3Client.html, 2021.

[17] ——, “AWS Java SDK :: Services :: Amazon S3 2.16.60,”
https://mvnrepository.com/artifact/software.amazon.awssdk/
s3/2.16.60, 2021.

[18] Gradle Inc., “Gradle Build Tool,” https://gradle.org/, 2021.
[19] JetBrains, “IntelliJ IDEA,” https://www.jetbrains.com/idea/,

2021.
[20] Amazon Web Services (AWS), “Working with local gateways,”

https://docs.aws.amazon.com/outposts/latest/userguide/
outposts-local-gateways.html, Aug. 2021.

[21] ——, “EC2-Classic,” https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ec2-classic-platform.html, Aug. 2021.

[22] ——, “AWS Serverless Application Repository Examples,” https:
//github.com/aws-samples/serverless-app-examples, Apr. 2020.

[23] Serverless, Inc., “Serverless Examples – A collection of ready-
to-deploy Serverless Framework services,” https://github.com/
serverless/examples, Apr. 2020.

[24] Amazon Web Services (AWS), “Policy Template List,”
https://docs.aws.amazon.com/serverless-application-model/
latest/developerguide/serverless-policy-template-list.html, 2020.

[25] ——, “Microservice HTTP Endpoint,”
https://github.com/aws-samples/serverless-app-examples-
/tree/master/javascript/microservice-http-endpoint, Oct. 2019.

[26] Serverless, “FFmpeg app,” https://github.com/serverless/
examples/tree/master/aws-ffmpeg-layer, Feb. 2020.

[27] ——, “Receive an email, store in S3 bucket, trigger a lambda
function,” https://github.com/serverless/examples/tree/
master/aws-node-ses-receive-email-body, Oct. 2018.

[28] ——, “Serverless REST API,” https://github.com/serverless/
examples/tree/master/aws-node-rest-api-with-dynamodb, Aug.
2019.

[29] Amazon Web Services (AWS), “AWS Bookstore Demo App,”
https://github.com/aws-samples/aws-bookstore-demo-app,
Jan. 2020.

[30] Nordstrom, Inc., “Hello, Retail!” https://github.com/kalevalp/
hello-retail-baseline, Sep. 2018.

[31] J. McKim, “Announcing the Winners of the Inaugural
ServerlessConf Architecture Competition,” https://read.acloud.

guru/announcing-the-winners-of-the-inaugural-serverlessconf-
architecture-competition-1dce2db6da3, May 2017.

[32] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Communications of the ACM, vol. 17, no. 7,
Jul. 1974.

[33] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the 18th

ACM Conference on Computer and Communications Security, ser.
CCS ’11. New York, NY, USA: Association for Computing
Machinery, 2011, pp. 627–638. [Online]. Available: https:
//doi.org/10.1145/2046707.2046779

[34] Android developer guides, “RequiresPermission,” https:
//developer.android.com/reference/androidx/annotation/
RequiresPermission, Dec. 2019.

[35] R. Shimizu and H. Kanuka, “Test-based least privilege discovery
on cloud infrastructure as code,” in 2020 IEEE International Confer-

ence on Cloud Computing Technology and Science (CloudCom), 2020,
pp. 1–8.

[36] M. W. Sanders and C. Yue, “Mining least privilege attribute based
access control policies,” in Proceedings of the 35th Annual Computer

Security Applications Conference, ser. ACSAC ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 404–416.
[Online]. Available: https://doi.org/10.1145/3359789.3359805

[37] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro,
“A Security Analysis of Amazon’s Elastic Compute Cloud
Service,” in Proceedings of the 27th Annual ACM Symposium

on Applied Computing, ser. SAC ’12. New York, NY, USA:
Association for Computing Machinery, 2012, pp. 1427–1434.
[Online]. Available: https://doi-org.proxy.lib.uwaterloo.ca/10.
1145/2245276.2232005

[38] Amazon Web Services (AWS), “AWS Security Best Practices,”
https://d0.awsstatic.com/whitepapers/Security/AWS Security
Best Practices.pdf, Aug. 2016.

[39] B. Cook, “Formal Reasoning About the Security of Amazon Web
Services,” in Computer Aided Verification, H. Chockler and G. Weis-
senbacher, Eds. Cham: Springer International Publishing, 2018,
pp. 38–47.

[40] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. S.
Luckow, N. Rungta, O. Tkachuk, and C. Varming, “Semantic-
based automated reasoning for AWS access policies using SMT,”
in 2018 Formal Methods in Computer Aided Design, FMCAD 2018,

Austin, TX, USA, October 30 - November 2, 2018, N. Bjørner
and A. Gurfinkel, Eds. IEEE, 2018, pp. 1–9. [Online]. Available:
https://doi.org/10.23919/FMCAD.2018.8602994

[41] Amazon Web Services (AWS), “AWS Config – Record and evalu-
ate configurations of your AWS resources,” https://aws.amazon.
com/config/, Apr. 2020.

[42] ——, “Amazon Macie – A machine learning-powered security
service to discover, classify, and protect sensitive data,” https:
//aws.amazon.com/macie/, Apr. 2020.

[43] ——, “AWS Trusted Advisor – Reduce Costs, Increase Per-
formance, and Improve Security,” https://aws.amazon.com/
premiumsupport/technology/trusted-advisor/, Apr. 2020.

[44] ——, “Amazon GuardDuty – Protect your AWS accounts and
workloads with intelligent threat detection and continuous moni-
toring,” https://aws.amazon.com/guardduty/, Apr. 2020.

Puneet Gill received his MASc and BASc in Computer Engi-
neering from the University of Waterloo, in Canada, where
he is currently working towards his PhD. He researches
information security.

Werner Dietl is an Associate Professor in the Electrical and
Computer Engineering (ECE) Department at the University
of Waterloo, Canada. He researches safe and productive
software development, towards which he combines theo-
retical results with practical tools so developers can create
high-quality, trustworthy software.

Mahesh Tripunitara is a Professor in the Electrical and
Computer Engineering (ECE) Department at the University
of Waterloo, Canada. He researches various aspects of in-
formation security, with particular use of algorithm design,
computational complexity and mathematical logic.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 23,2022 at 04:34:54 UTC from IEEE Xplore. Restrictions apply.

https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://blog.cloudsploit.com/a-technical-analysis-of-the-capital-one-hack-a9b43d7c8aea
https://blog.cloudsploit.com/a-technical-analysis-of-the-capital-one-hack-a9b43d7c8aea
https://blog.appsecco.com/an-ssrf-privileged-aws-keys-and-the-capital-one-breach-4c3c2cded3af
https://blog.appsecco.com/an-ssrf-privileged-aws-keys-and-the-capital-one-breach-4c3c2cded3af
https://medium.com/ymedialabs-innovation/an-aws-managed-policy-that-allowed-granting-root-admin-access-to-any-role-51b409ea7ff0
https://medium.com/ymedialabs-innovation/an-aws-managed-policy-that-allowed-granting-root-admin-access-to-any-role-51b409ea7ff0
https://medium.com/ymedialabs-innovation/an-aws-managed-policy-that-allowed-granting-root-admin-access-to-any-role-51b409ea7ff0
https://github.com/puneetgill05/AWSDatabase
https://github.com/puneetgill05/AWSDatabase
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-store-restore.html%23ami-s3-permissions
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ami-store-restore.html%23ami-s3-permissions
https://randoop.github.io/randoop/
https://doi.org/10.1145/62959.62964
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/s3/S3Client.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/s3/S3Client.html
https://mvnrepository.com/artifact/software.amazon.awssdk/s3/2.16.60
https://mvnrepository.com/artifact/software.amazon.awssdk/s3/2.16.60
https://gradle.org/
https://www.jetbrains.com/idea/
https://docs.aws.amazon.com/outposts/latest/userguide/outposts-local-gateways.html
https://docs.aws.amazon.com/outposts/latest/userguide/outposts-local-gateways.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-classic-platform.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-classic-platform.html
https://github.com/aws-samples/serverless-app-examples
https://github.com/aws-samples/serverless-app-examples
https://github.com/serverless/examples
https://github.com/serverless/examples
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html
https://github.com/aws-samples/serverless-app-examples/tree/master/javascript/microservice-http-endpoint
https://github.com/aws-samples/serverless-app-examples/tree/master/javascript/microservice-http-endpoint
https://github.com/serverless/examples/tree/master/aws-ffmpeg-layer
https://github.com/serverless/examples/tree/master/aws-ffmpeg-layer
https://github.com/serverless/examples/tree/master/aws-node-ses-receive-email-body
https://github.com/serverless/examples/tree/master/aws-node-ses-receive-email-body
https://github.com/serverless/examples/tree/master/aws-node-rest-api-with-dynamodb
https://github.com/serverless/examples/tree/master/aws-node-rest-api-with-dynamodb
https://github.com/aws-samples/aws-bookstore-demo-app
https://github.com/kalevalp/hello-retail-baseline
https://github.com/kalevalp/hello-retail-baseline
https://read.acloud.guru/announcing-the-winners-of-the-inaugural-serverlessconf-architecture-competition-1dce2db6da3
https://read.acloud.guru/announcing-the-winners-of-the-inaugural-serverlessconf-architecture-competition-1dce2db6da3
https://read.acloud.guru/announcing-the-winners-of-the-inaugural-serverlessconf-architecture-competition-1dce2db6da3
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1145/2046707.2046779
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://doi.org/10.1145/3359789.3359805
https://doi-org.proxy.lib.uwaterloo.ca/10.1145/2245276.2232005
https://doi-org.proxy.lib.uwaterloo.ca/10.1145/2245276.2232005
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://doi.org/10.23919/FMCAD.2018.8602994
https://aws.amazon.com/config/
https://aws.amazon.com/config/
https://aws.amazon.com/macie/
https://aws.amazon.com/macie/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://aws.amazon.com/guardduty/

